support online: +919974300810

Back To Top

Arduino Robot

Be the first to review this product

₹9,009.00
OR

Quick Overview

The Arduino Robot has two microcontrollers, one on each of its two boards. The Motor Board controls the motors, and the Control Board reads sensors and decides how to operate.

Arduino Robot

Details

The Arduino Robot is the first official Arduino on wheels

The Arduino Robot has two microcontrollers, one on each of its two boards. The Motor Board controls the motors, and the Control Board reads sensors and decides how to operate.
 
The Arduino Robot is the first official Arduino on wheels. The robot has two processors, one on each of its two boards. The Motor Board controls the motors, and the Control Board reads sensors and decides how to operate. Each of the boards is a full Arduino board programmable using the Arduino IDE.

Both Motor and Control boards are microcontroller boards based on the ATmega32u4 (datasheet). The Robot has many of its pins mapped to on-board sensors and actuators.

Programming the robot is similar to the process with the Arduino Leonardo. Both processors have built-in USB communication, eliminating the need for a secondary processor. This allows the Robot to appear to a connected computer as a virtual (CDC) serial / COM port.

As always with Arduino, every element of the platform – hardware, software and documentation – is freely available and open-source. This means you can learn exactly how it's made and use its design as the starting point for your own robots. The Arduino Robot is the result of the collective effort from an international team looking at how science can be made fun to learn. Arduino is now on wheels, come ride with us!

 

Power

The Arduino Robot can be powered via the USB connection or with 4 AA batteries. The power source is selected automatically.

The battery holder holds 4 rechargeable NiMh AA batteries. NB : Do not use non-rechargeable batteries with the robot

For safety purposes, the motors are disabled when the robot is powered from the USB connection.

The robot has an on-board battery charger that requires 9V external power coming from an AC-to-DC adapter (wall-wart). The adapter can be connected by plugging a 2.1mm center-positive plug into the Motor Board's power jack. The charger will not operate if powered by USB.

The Control Board is powered by the power supply on the Motor Board.

Memory

The ATmega32u4 has 32 KB (with 4 KB used for the bootloader). It also has 2.5 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

The Control Board has an extra 512 Kbit EEPROM that can be accessed via I2C. 

There is an external SD card reader attached to the GTFT screen that can be accessed by the Control Board's processor for additional storage.

Input and Output

The Robot comes with a series of pre-soldered connectors. There are a number of additional spots for you to install additional parts if needed.

All the connectors are labelled on the boards and mapped to named ports through the Robot library allowing access to standard Arduino functions. Each pin can provide or receive a maximum of 40mA at 5V.

Some pins have specialized functions:

  • Control Board TK0 to TK7: these pins are multiplexed to a single analog pin on theControl Board's microprocessor. They can be used as analog inputs for sensors like distance sensors, analog ultrasound sensors, or mechanical switches to detect collisions.
  • Control Board TKD0 to TKD5: these are digital I/O pins directly connected to the processor, addressed using Robot.digitalRead() and Robot.digitalWrite) functions. Pins TKD0 to TKD3 can also be used as analog inputs with Robot.analogRead() Note: if you have one of the first generation robots, you will see that the TKD* pins are named TDK* on the Robot's silkscreen. TKD* is the proper name for them and is how we address them on the software.

 

 
+ open/close